- 2. Orlov I.V. A termwise differentiation in the inductive scales of the locally convex spaces // Operator Theory. Advances & Appl. -V.118. Basel-Boston-Berlin: Birkhäuser, 2000. P.321-333.
- 3. Орлов И.В. Теорема Макки-Аренса для шкал пространств //Динамические системы. Симферополь: «КФТ», 2000. Вып.16. С.165-171.
- 4. Эдвардс Р. Функциональный анализ. Теория и приложения. М.: Мир, 1969. 1072 с.
- 5. Шефер Х. Топологические векторные пространства. М.: Мир, 1971. 360с.
- 6. Картан А. Дифференциальное исчисление. Дифференциальные формы. М.: Мир. 1971.- 392 с.

Поступила в редколлегию 12.05.2001 г.

УДК 519.85

О.А. ЕМЕЦ, док. физ.-мат. наук, Е.В. РОСКЛАДКА, асп., Полтавский гос. техн. ун-т

МНОГОУРОВНЕВАЯ ЗАДАЧА ОБСЛУЖИВАНИЯ КАК ЗАДА-ЧА ЕВКЛИДОВОЙ КОМБИНАТОРНОЙ ОПТИМИЗАЦИИ И ЕЕ РЕШЕНИЕ

Для одной задачи размещения объектов обслуживания на основе свойств множеств перестановок и полиразмещений в статье построена математическая модель и алгоритм ее решения.

Большое количество важных задач в различных отраслях при моделировании динамических систем адекватно описываются с помощью моделей оптимизационных задач на комбинаторных множествах [1-3].

Рассмотрим задачу размещений объектов обслуживания на фиксированном уровне системы обслуживания.

Пусть заданы матрица расстояний, элемент которой r_{ij} - расстояние между пунктами i и j, расчетное количество клиентов a_i в каждом населенном пункте и $q_1, q_2, ..., q_w$ - возможные емкости объектов (в количестве клиентов) обслуживания. Нужно так расположить объекты в пунктах, чтобы они были полностью загружены обслуживанием клиентов, находящихся в заданом радиусе обслуживания r с минимизацией количества необслуженых клиентов, обслуживание которых передается на следующий уровень динамической системы обслуживания.

Пусть $G=\{0,...,0,a_r,...,a_1\}=\{g_1,...,g_k\}$ - множество, которое имеет $h\leq r+1$ разных элементов $g_1\leq ...\leq g_k,\ g_1=g_2=...=g_{k-r}=0,$

ISSN 0203-3755. Динам. системы, 2001, Вып. 17

$$g_{k-r+1} = a_r,...,g_k = a_1.$$

Введем в рассмотрение вектор x — элемент множества перестановок [3] $E_k(G)$ вида $x=(x_1^1,...,x_r^1,x_1^2,...,x_r^2,...,x_{(s-1)r+1}^s,...,x_{rs}^s), i\in J_s,$ $(x_i^j=0,$ если пункт j не обслуживается объектом i, $x_i^j=a_i,i\in J_r$ в противном случае).

Введем вектор y - элемент множества полиразмещений [3] E(Q,H), вида $y=(y_1^1,...,y_w^1,y_1^2,...,y_w^2,...,y_1^s,...,y_w^s)$, $y_i^j \in \{0,q_i,2q_i,...,k(i)q_i^{}\}=Q_i,\; j\in J_s\;(k(i)$ - количество одинаковых q(i) объектов в пункте j).

Обозначим декартовое произведение множеств $E_k(G)$, E(Q, H) $\mathbf{e} = E_k(G) \times E(Q, H)$, $z = (x, y) \in \mathbf{e}$, где $x \in E_k(G)$, $y \in E(Q, H)$.

Математическая модель задачи примет вид: найти

$$\min_{z \in \mathbf{e}} \sum_{j=1}^{s} \left(\sum_{i=1}^{r} x_i^j - \sum_{i=1}^{w} y_i^j \right)$$
 (1)

при ограничениях:

$$\sum_{i=1}^{r} x_{i}^{j} - \sum_{i=1}^{w} y_{i}^{j} \ge 0, \forall j \in J_{s}; \quad r_{ij} \le r,$$

тут i - номер пункта, который выбран для размещения объектов обслуживания.

Отметим, что
$$\sum_{i=1}^{s} \sum_{i=1}^{r} x_i^j = \sum_{i=1}^{r} a_i$$
.

Построим алгоритм метода ветвей и границ для решения этой задачи евклидовой комбинаторной оптимизации [3].

Оценкой для множества допустимых решений при разветвлении $m{e}$ есть величина

$$v^{j}(t) = v^{j-1}(t) + \min\left(\sum_{i=1}^{r} x_{i}^{j} - \sum_{i=1}^{w} y_{i}^{j}\right), \quad j \in J_{s}, \ t \in J_{p},$$
 (2)

где j - уровень разветвления, p - количество веток.

Отсечение t-го допустимого решения проводим в том случае, если существует такое j, что

$$v^{j}(t) > \min(v^{s}(i)), \quad i \in J_{t-1}. \tag{3}$$

Ветвление множества описано в алгоритме.

Алгоритм:

Шаг 1. t=1.

Шаг 2. *j*=1.

Шаг 3. Формируем множество $\{x^j(t)\}$ векторов $x^j(t)$, которые удовлетворяет условиям:

- 1) если $r_{ii} > r$, то $x_i^j = 0$;
- 2) если $r_{ii} \le r$, то x_i^j выбираем из множества $\{0, a_i\}$.

Шаг 4. Для каждого множества $\{x^j(t)\}$ определяем вектора y^j , которые удовлетворяют условию: $y_i^j \in Q_i, \forall i \in J_w$.

Шаг 5. Разветвляем вектор $x^{j}(t)$. Результатом разветвления есть вектора $x^{j+1}(t)$, для которых из условия $x_i^{j} = a_i$ вытекает $x_i^{j+1}(t) = 0$, $i \in J_r$, $j \in J_s$; j = j+1

Шаг 6. Вычисляем оценки по формуле (2).

Шаг 7. Если выполняется условие (3), то вектор $x^{j}(t)$ исключается из рассмотрения и переходим к шагу 9.

Шаг 8. Если j < s, то переходим к шагу 5.

Шаг 9. Если t < p, то принимаем t = t + 1 и переходим к шагу 2.

Шаг 10. Оптимальное решение задачи определяет вектор x, которому соответствует $\min(v^s(i))$, $\forall i \in J_p$.

Шаг 11. Вычисляем оптимальное значение целевой функции (1).

Алгоритм запрограммирован на языке Turbo Pascal 7.0. Рассмотрим пример применения данного алгоритма к задаче размещений лечебных отделений. Величины r и w - заданы; остальные данные являются равномерно распределенными случайными величинами в интервале [0;50].

Пусть задано количество населенных пунктов r=4. Известно, что количество больных, которые нуждаются в обслуживании для каждого населенного пункта соответственно равно $a_1=14,\ a_2=8,\ a_3=7$ и $a_4=6$ больных. Задано радиус обслуживания r=25 и расстояния между населенными пунктами i и j:

$$r_{12} = 20$$
, $r_{13} = 30$, $r_{14} = 28$, $r_{23} = 12$, $r_{24} = 35$, $r_{34} = 40$.

Дано, что в населенных пунктах необходимо построить лечебные отделения двух типов $q_1 = 12$, $q_2 = 5$ таким образом, чтобы минимизировать количество необслуживаемых больных на данном уровне.

$$Q_1 = \{0,12,24\}, \ Q_2 = \{0,5,10,15,20,25,30,35\}; \ |\mathbf{e}| = 1,2 \cdot 10^3.$$

(Здесь и далее число элементов |e| в множестве e дается с точностью до двух значащих цифр.)

Шаг 1-3. На первом уровне имеем четыре допустимых вектора x^1 : $x^1 = (0,0,0,0)$; $x^1 = (14,0,0,0)$; $x^1 = (0,8,0,0)$; $x^1 = (14,8,0,0)$.

Дальше, для сокращения записи, нулевые элементы векторов будем упускать (кроме вектора (0,0,0,0)), то есть записанные выше вектора будут иметь вид : $x_i^1 = 0$, $\forall i \in J_4$; $x_1^1 = 14$; $x_2^1 = 8$; $x_1^1 = 14$, $x_2^1 = 8$.

III ar 4.
$$x_i^1 = 0$$
, $\forall i \in J_4$, $y_i^1 = 0$, $\forall i \in J_2$ $v^1 = 0$; $x_1^1 = 14$, $y_1^1 = 12$, $v^1 = 2$; $x_2^1 = 8$, $y_2^1 = 5$, $v^1 = 3$; $x_1^1 = 14$, $x_2^1 = 8$, $y_1^1 = 12$, $y_2^1 = 10$, $v^1 = 0$.

Шаг 5-8. Разветвляем первый вектор (t=1) и переходим к следующим уровням разветвления:

$$j=2$$
: $x_1^2 = 14$, $y_1^2 = 12$, $v^2(1) = 2$;
 $j=3$: $x_2^3 = 8$, $x_3^3 = 7$, $y_2^3 = 15$, $v^3(1) = 2$;
 $j=4$: $x_4^4 = 6$, $y_2^4 = 5$, $v^4(1) = 3$.

Принимаем $\min(v^{j}(i)) = v^{4}(1) = 3$.

Шаг 9. Повторяем шаги 2-8. t=2.

$$j=1: x_i^1 = 0, \forall i \in J_4, y_i^1 = 0, \forall i \in J_2, v^1(2) = 0;$$

$$j=2: x_1^2 = 14, x_2^2 = 8, x_3^2 = 7, y_1^2 = 24, y_2^2 = 5, v^2(2) = 0;$$

$$j=3: x_i^3 = 0, \forall i \in J_4, y_i^3 = 0, \forall i \in J_2, v^3(2) = 0;$$

$$j=4: x_4^4 = 6, y_2^4 = 5, v^4(2) = 1.$$

Принимаем $\min(v^{j}(i)) = v^{4}(2) = 1$.

Оценки (2) для остальных векторов превышают значение $v^4(2)$, то есть для них выполняется условие (3). Эти вектора x исключаем из рассмотрения.

Шаг 10. Таким образом, оптимальное размещения объектов обслуживания определяет вектор x: $x_i^1=0$, $\forall i\in J_4$; $x_1^2=14$, $x_2^2=8$, $x_3^2=7$; $x_i^3=0$, $\forall i\in J_4$; $x_4^4=6$, то есть клиенты будут обслуживаться во втором и четвертом пунктах; оптимальному количеству отделений в размещенных объектах обслуживания соответствует вектор y: $y_i^1=0$, $\forall i\in J_2$; $y_1^2=2q_1=24$, $y_2^2=q_2=5$; $y_i^3=0$, $\forall i\in J_2$; $y_2^4=q_2=5$; то есть во втором пункте - 2 объекта по 12 мест и 1 объект на 5 мест, в четвертом – 1 объект на 5 мест.

Шаг 11. Оптимальное значение целевой функции $F_{\min}(z)=1$, то есть из 35 больных лечение одного передается на высший уровень.

Примеры расчетов на ЭВМ Pentium-120 приведены в таблице. Данные для расчетов сформированы случайным образом аналогично описанному выше примеру; r, w - задаются.

№	r	W	e	Время	No	r	W	e	Время
1	4	2	$1,1\cdot 10^{6}$	3 c	11	6	4	$3,8 \cdot 10^{8}$	8 мин 12 с
2	4	3	$1,8 \cdot 10^{7}$	40 c	12	6	5	$4,8 \cdot 10^8$	32 мин 30 с
3	4	4	$8,4 \cdot 10^{6}$	14 c	13	7	2	$1,7 \cdot 10^8$	40 c
4	4	5	$4,7 \cdot 10^5$	4 c	14	7	3	$3,4 \cdot 10^{7}$	1 мин 15 с
5	5	2	$6,3 \cdot 10^6$	17 c	15	7	4	$9,9 \cdot 10^9$	3 ч 50 мин
6	5	3	$4,2\cdot 10^{8}$	14 мин 20с	16	8	2	$7,1\cdot 10^{8}$	41 мин 16 с
7	5	4	$6,0\cdot 10^6$	11 c	17	8	3	$9,1\cdot10^{8}$	30 мин 56 с
8	5	5	$1,5 \cdot 10^7$	1 мин 20 с	18	9	2	$4,0\cdot 10^{8}$	27 мин 09 с
9	6	2	$2,2\cdot 10^{6}$	41 c	19	9	3	$3,0\cdot10^{8}$	11 мин 23 с
10	6	3	$1,7 \cdot 10^7$	1 мин 05 с	20	10	2	$2,8\cdot10^{8}$	46 мин

Список использованной литературы

- 1. Сергиенко И. В., Каспшицкая М. Ф. Модели и методы решения на ЭВМ комбинаторных задач оптимизации.- Киев: Наук. думка, 1981.- 288 с.
- 2. Стоян Ю.Г., Яковлев С.В. Математические модели и оптимизационные методы геометрического проектирования .- К.: Наук. думка, 1986.- 268с.
- 3. Стоян Ю.Г., Ємець О.О. Теорія і методи евклідової комбінаторної оптимізації. Київ: Інститут системних досліджень освіти, 1993. 188 с.

Поступила в редколлегию 29.09.2001 г.